Skip to main content

How-To: Integrate and Use MCP (Model Context Protocol) with FuzzForge

FuzzForge supports the Model Context Protocol (MCP), enabling LLM clients and AI assistants to interact directly with the security testing platform. This guide walks you through setting up, connecting, and using MCP with FuzzForge for automated security scans, results analysis, and intelligent recommendations.


πŸš€ What is MCP?​

MCP (Model Context Protocol) is a standard that allows AI models and clients (like Claude, GPT, or custom agents) to interact with backend tools and APIs in a structured, tool-oriented way. With FuzzForge’s MCP integration, all FastAPI endpoints become MCP-compatible tools, making security automation accessible to any MCP-aware client.


1. Prerequisites​

  • FuzzForge installed and running (see Getting Started)
  • Docker and Docker Compose installed (for containerized deployment)
  • An MCP-compatible client (LLM, custom agent, or CLI tool)

2. Start FuzzForge with MCP Support​

From your project root, launch the platform using Docker Compose:

docker compose up -d

This starts the backend API and the MCP gateway.


3. Verify MCP Integration​

Check that the API and MCP endpoints are live:

# API status
curl http://localhost:8000/

# List available OpenAPI endpoints (now MCP-enabled)
curl http://localhost:8000/openapi.json | jq '.paths | keys'

# MCP HTTP endpoint
curl http://localhost:8010/mcp

You should see status responses and endpoint listings.


4. MCP Endpoints and Tools​

MCP Endpoints​

  • HTTP MCP endpoint: http://localhost:8010/mcp
  • SSE (Server-Sent Events): http://localhost:8010/mcp/sse
  • Base API: http://localhost:8000

FastAPI Endpoints (now MCP tools)​

  • GET / β€” API status
  • GET /workflows/ β€” List available workflows
  • POST /workflows/{workflow_name}/submit β€” Submit security scans
  • GET /runs/{run_id}/status β€” Check scan status
  • GET /runs/{run_id}/findings β€” Get scan results
  • GET /fuzzing/{run_id}/stats β€” Fuzzing statistics

MCP-Specific Tools​

  • submit_security_scan_mcp β€” Submit security scanning workflows
  • get_comprehensive_scan_summary β€” Get detailed scan analysis with recommendations

5. Usage Examples​

Example 1: Submit a Security Scan via MCP​

{
"tool": "submit_security_scan_mcp",
"parameters": {
"workflow_name": "infrastructure_scan",
"target_path": "/path/to/your/project",
"volume_mode": "ro",
"parameters": {
"checkov_config": {
"severity": ["HIGH", "MEDIUM", "LOW"]
},
"hadolint_config": {
"severity": ["error", "warning", "info", "style"]
}
}
}
}

Example 2: Get a Comprehensive Scan Summary​

{
"tool": "get_comprehensive_scan_summary",
"parameters": {
"run_id": "your-run-id-here"
}
}

6. Available Workflows​

You can trigger these workflows via MCP:

  1. infrastructure_scan β€” Docker/Kubernetes/Terraform security analysis
  2. static_analysis_scan β€” Code vulnerability detection
  3. secret_detection_scan β€” Credential and secret scanning
  4. penetration_testing_scan β€” Network and web app testing
  5. security_assessment β€” Comprehensive security evaluation

List all workflows:

curl http://localhost:8000/workflows/

7. MCP Client Configuration​

For clients that require config files, use:

{
"mcpServers": {
"fuzzforge": {
"command": "curl",
"args": ["-X", "POST", "http://localhost:8010/mcp"],
"env": {}
}
}
}

8. Integration Benefits​

  • AI-Powered Security Testing: LLMs can submit scans, interpret findings, and provide recommendations.
  • Direct API Access: All FastAPI endpoints are available as MCP tools.
  • Real-Time Results: Stream scan progress and results to AI clients.
  • Intelligent Analysis: AI can generate reports, prioritize vulnerabilities, and track improvements.

9. Advanced Usage​

  • Custom MCP Tools: Enhanced tools provide intelligent summarization, contextual recommendations, and progress tracking.
  • Docker Compose Integration: MCP tools work seamlessly in containerized environments with automatic service discovery and volume mapping.
  • Health Monitoring: MCP clients can verify system health via /health endpoints.

10. Troubleshooting​

MCP Connection Failed​

# Check backend status
docker compose ps fuzzforge-backend
curl http://localhost:8000/health

Workflows Not Found​

curl http://localhost:8000/workflows/

Scan Submission Errors​

curl -X POST http://localhost:8000/workflows/infrastructure_scan/submit \
-H "Content-Type: application/json" \
-d '{"target_path": "/your/path", "volume_mode": "ro"}'

General Support​

  • Check Docker Compose logs: docker compose logs fuzzforge-backend
  • Verify MCP endpoint: curl http://localhost:8010/mcp
  • Test FastAPI endpoints directly before using MCP

11. Architecture Overview​

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚ MCP Client │───▢│ FastMCP │───▢│ FuzzForge β”‚
β”‚ (LLM/AI) β”‚ β”‚ Integration β”‚ β”‚ API β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
β”‚ β”‚
β–Ό β–Ό
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚ MCP Tools β”‚ β”‚ Prefect β”‚
β”‚ - scan submit β”‚ β”‚ Workflows β”‚
β”‚ - results β”‚ β”‚ - Security β”‚
β”‚ - analysis β”‚ β”‚ - Fuzzing β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

12. Further Reading​


With MCP, FuzzForge becomes a powerful, AI-friendly security automation platform. Connect your favorite LLM, automate security scans, and get actionable insightsβ€”all with a few API calls!