LLM & Environment Configuration
FuzzForge AI relies on LiteLLM adapters embedded in the Google ADK runtime, so you can swap between providers without touching code. Configuration is driven by environment variables inside .fuzzforge/.env
.
Minimal Setup
LLM_PROVIDER=openai
LITELLM_MODEL=gpt-5-mini
OPENAI_API_KEY=sk-your-key
Set these values before launching fuzzforge ai agent
or python -m fuzzforge_ai
.
.env Template
fuzzforge init
creates .fuzzforge/.env.template
alongside the real secrets file. Keep the template under version control so teammates can copy it to .fuzzforge/.env
and fill in provider credentials locally. The template includes commented examples for Cognee, AgentOps, and alternative LLM providers—extend it with any project-specific overrides you expect collaborators to set.
Provider Examples
OpenAI-compatible (Azure, etc.)
LLM_PROVIDER=azure_openai
LITELLM_MODEL=gpt-4o-mini
LLM_API_KEY=sk-your-azure-key
LLM_ENDPOINT=https://your-resource.openai.azure.com
Anthropic
LLM_PROVIDER=anthropic
LITELLM_MODEL=claude-3-haiku-20240307
ANTHROPIC_API_KEY=sk-your-key
Ollama (local models)
LLM_PROVIDER=ollama_chat
LITELLM_MODEL=codellama:latest
OLLAMA_API_BASE=http://localhost:11434
Run ollama pull codellama:latest
ahead of time so the adapter can stream tokens immediately. Any Ollama-hosted model works; set LITELLM_MODEL
to match the image tag.
Vertex AI
LLM_PROVIDER=vertex_ai
LITELLM_MODEL=gemini-1.5-pro
GOOGLE_APPLICATION_CREDENTIALS=/path/to/service-account.json
Additional LiteLLM Providers
LiteLLM exposes dozens of adapters. Popular additions include:
LLM_PROVIDER=anthropic_messages
for Claude 3.5.LLM_PROVIDER=azure_openai
for Azure-hosted GPT variants.LLM_PROVIDER=groq
for Groq LPU-backed models (GROQ_API_KEY
required).LLM_PROVIDER=ollama_chat
for any local Ollama model.LLM_PROVIDER=vertex_ai
for Gemini.
Refer to the LiteLLM provider catalog when mapping environment variables; each adapter lists the exact keys the ADK runtime expects.
Session Persistence
SESSION_PERSISTENCE=sqlite # sqlite | inmemory
MEMORY_SERVICE=inmemory # ADK memory backend
Set SESSION_PERSISTENCE=sqlite
to preserve conversational history across restarts. For ephemeral sessions, switch to inmemory
.
Knowledge Graph Settings
To enable Cognee-backed graphs:
LLM_COGNEE_PROVIDER=openai
LLM_COGNEE_MODEL=gpt-5-mini
LLM_COGNEE_API_KEY=sk-your-key
If the Cognee variables are omitted, graph-specific tools remain available but return a friendly "not configured" response.
MCP / Backend Integration
FUZZFORGE_MCP_URL=http://localhost:8010/mcp
The agent uses this endpoint to list, launch, and monitor Prefect workflows.
Tracing & Observability
The executor ships with optional AgentOps tracing. Provide an API key to record conversations, tool calls, and workflow updates:
AGENTOPS_API_KEY=sk-your-agentops-key
AGENTOPS_ENVIRONMENT=local # Optional tag for dashboards
Set FUZZFORGE_DEBUG=1
to surface verbose executor logging and enable additional stdout in the CLI. For HTTP deployments, combine that with:
LOG_LEVEL=DEBUG
The ADK runtime also honours GOOGLE_ADK_TRACE_DIR=/path/to/logs
if you want JSONL traces without an external service.
Debugging Flags
FUZZFORGE_DEBUG=1 # Enables verbose logging
LOG_LEVEL=DEBUG # Applies to the A2A server and CLI
These flags surface additional insight when diagnosing routing or ingestion issues. Combine them with AgentOps tracing to get full timelines of tool usage.
Related Code
- Env bootstrap:
ai/src/fuzzforge_ai/config_manager.py
- LiteLLM glue:
ai/src/fuzzforge_ai/agent.py
- Cognee integration:
ai/src/fuzzforge_ai/cognee_service.py